Out-branchings with Extremal Number of Leaves

نویسنده

  • Gregory Gutin
چکیده

An out-tree T in a digraph D is subgraph of D which is an orientation of a tree that has only one vertex of in-degree 0 (root). A vertex of T is a leaf if it has out-degree 0. A spanning out-tree is called an out-branching. We’ll overview some recent algorithmic and theoretical results on out-branchings with minimum and maximum number of leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Better Algorithms and Bounds for Directed Maximum Leaf Problems

The Directed Maximum Leaf Out-Branching problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we improve known parameterized algorithms and combinatorial bounds on the number of leaves in out-branchings. We show that – every strongly connected digraph D of order n with minimum indegree at least 3 has an ou...

متن کامل

Spanning directed trees with many leaves

The Directed Maximum Leaf Out-Branching problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that – every strongly connected n-vertex digraph D with minimum indegree at least 3 has an out-branching with at least (n/4) −...

متن کامل

ar X iv : 0 80 3 . 07 01 v 1 [ cs . D S ] 5 M ar 2 00 8 Spanning directed trees with many leaves ⋆

The Directed Maximum Leaf Out-Branching problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that – every strongly connected n-vertex digraph D with minimum indegree at least 3 has an out-branching with at least (n/4) −...

متن کامل

Tight Bounds and Faster Algorithms for Directed Max-Leaf Problems

An out-tree T of a directed graph D is a rooted tree subgraph with all arcs directed outwards from the root. An out-branching is a spanning out-tree. By l(D) and ls(D) we denote the maximum number of leaves over all out-trees and out-branchings of D, respectively. We give fixed parameter tractable algorithms for deciding whether ls(D) ≥ k and whether l(D) ≥ k for a digraph D on n vertices, both...

متن کامل

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008